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Abstract

This paper presents a method for the self-calibration of non-rigid affine structure to a Euclidean co-ordinate frame
from only two views by enforcing constraints derived from the known structure of the human body, such as piecewise
rigidity and approximate symmetry. We show that the proposed algorithm is considerably more efficient yet equally
accurate when compared to previous methods. The resulting structure and motion is then refined further using a
full bundle adjustment to give maximum likelihood values for body segment lengths and joint angles. A quantitative
analysis is presented using synthetic data whilst qualitative results are demonstrated for real examples of human
motion.
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1. Introduction

In order to recover dynamic, non-rigid human mo-
tion, commercial systems (e.g . [1]) employ a num-
ber of hardware-synchronized and accurately cali-
brated cameras under controlled studio conditions.
High contrast markers at anatomical locations on
the surface of the body are tracked in each cam-
era, their 3D co-ordinates computed by triangula-
tion and a ‘skeleton’ fitted to the resulting marker
set using kinematic constraints. Various motion pa-
rameter (e.g . joint angles) can then be computed
over the sequence.

A more practical system would eliminate many
of these constraints such that human motion can
be recovered from stock footage using only a few
(e.g . two) cameras that are unsynchronized and un-
calibrated. This would not only reduce the cost and
technical complexity of the solution but could also
be employed in applications such as surveillance or
sporting analysis. For this to be achieved, however,
the system must address four key problems: recov-
ering projected anatomical landmarks; establishing
spatial correspondence; camera synchronization;
camera calibration (the focus of this paper).

Although the recovery of projected anatomical
landmarks (e.g . joint centres) has been partially ad-
dressed via database searching [2–4], regression [5–7]
and assembling kinematic structure from indepen-
dently detected body parts [8–10], we simply label
joint locations by hand since tracking is not our goal
in this paper. This intuitive labelling of the image
features (e.g . “left shoulder”) also provides all the
information required for matching (i.e. spatial cor-
respondence).

Camera synchronization ensures that image fea-
tures matched between sequences also correspond
to the same instant in time before triangulation. In
commercial systems, this is achieved using hardware
although several works have shown that the image
data itself can provide sufficient constraints to syn-
chronize the cameras [11–13]. In particular, our pre-
vious studies have shown this to be the case for se-
quences of human motion [14,15].

The problem we address in this work, however, is
that of camera calibration from only two views us-
ing constraints derived from the known structure of
the human body, thus providing 3D structure in a
Euclidean co-ordinate frame where meaningful mo-
tion parameters (e.g . joint angles and body segment
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lengths) may be recovered. Commercial systems em-
ploy an explicit calibration procedure prior to mo-
tion capture in order to calibrate several cameras
with respect to each other. Specifically, a markered
‘wand’ of known dimensions is waved around the
workspace during motion capture such that aggre-
gating all measurements provides a dense set of fea-
tures with known geometry in the workspace from
which the cameras can be calibrated. Alternative
approaches have used a sampling strategy to es-
timate fundamental matrices between pairs of im-
age sequences based on epipolar tangents to frontier
points on the silhouette [16].

In constrast, we develop a method that builds on
work by Liebowitz and Carlsson [17] and is more
suitable for the practical system discussed. In par-
ticular, affine structure of the human body is re-
covered via factorization [18] from only two views,
where there are insufficient constraints on the pro-
jection matrices to calibrate the cameras. To recover
a unique solution, known properties of the human
body (in particular, symmetry and piecewise rigid-
ity) are exploited in order to provide further con-
straints. In other related work, Taylor [19] showed
that applying even stronger constraints on struc-
ture (specifically, enforcing fixed ratios of segment
lengths) was sufficient to recover scene structure (up
to some depth ambiguities and with user input) for
a single image.

In the original implementation, Liebowitz and
Carlsson’s algorithm [17] conducted a non-linear
minimization over both projection and structural
constraints. In this work, we improve the method
by strictly enforcing projection constraints, thus
reducing the dimensionality of the solution space
by 66%. We show that this not only results in a
considerable increase in efficiency but also elimi-
nates many ambiguities in the original implemen-
tation and provides an intuitive initialization for
the optimization. We finish by completing a bundle
adjustment over all free parameters to minimize a
geometric (rather than algebraic) error and recover
the maximum likelihood solution. 1

2. Structure From Motion by Factorization

In their groundbreaking paper, Tomasi and
Kanade [18] showed that using an affine camera
model (a sensible approximation in many cases),

1 Preliminary results of this method were published in [15]

projection is linear such that a matrix of feature
trajectories from a rigid scene can be written as:

W =


x1

1 · · · x1
N

...
. . .

...

xV
1 · · · xV
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 =


P1

...

PV

[
X1 · · · XN

]
= PX

(1)

where xv
n is the image of the 3D feature Xn under

the projection matrix PV . Using this result, they
showed that rank(W) ≤ 4 although normalization
of the feature trajectories with respect to translation
results in a tighter lower bound of 3. Crucially, they
noted that W can then be factorized into P and X
using the Singular Value Decomposition (SVD) and
retaining only the data associated with the relevant
singular values. This affine structure and motion was
then “upgraded” to a Euclidean co-ordinate frame
by applying 2V constraints (zero skew and unit as-
pect ratio) on the rows of P [20].

3. Self-Calibration

We now discuss the applicability of this method
to two sequences of a non-rigid scene where we re-
cover structure and motion by factorization inde-
pendently at each time instant, i. With some abuse
of notation, we redefine Pi as the 4×3 normalized
(with respect to translation) projection matrix at
time i and Xi as the 3×N structure matrix at time
i (also normalized with respect to translation). At
each instant i, structure is known only up to an un-
known affine transformation, Gi:

Wi = PiXi = PiG−1
i GiXi (2)

where each Gi is an invertible, homogeneous 3×3
matrix that can be factorized by QR-decomposition
(Gi → QiBi) into a 3D rotation, Qi, and an upper-
triangular matrix, Bi. Since Qi effects a rotation of
the Euclidean coordinate frame after calibration it
can be discarded without loss of generality. Conse-
quently, as each Bi has six independent, non-zero
elements a sequence of F frames has 6F − 1 degrees
of freedom, up to a global scale factor.

We define Ωi = BT
i Bi such that Bi is recovered

from Ωi by Cholesky factorization if and only if Ωi

is positive definite. Eigen-decomposition of Ωi =
ViDiVT

i such that Bi = D1/2
i VT

i explains the ac-
tion of Bi geometrically as a rotation into a new co-
ordinate frame, followed by an anisotropic scaling.

2



Fig. 1. Symmetry (solid) and rigidity (dashed) constraints

between a pair of reconstructions.

3.1. Motion constraints

To recover the required set of all Bi that trans-
forms each affine reconstruction into Euclidean
space, constraints are applied to all projection
matrices, Pi, in a form of self-calibration [18,20].
Specifically, for a given B (dropping subscripts for
clarity) the axes, iT and jT , of an affine projection
matrix transform to iT B−1 and jT B−1 where the
costs for skew, rskw, and difference in length, rasp,
are given by:

rskw = iT B−1B−T j

= iT Ω−1j (3)

rasp = iT B−1B−T i− jT B−1B−T j

= iT Ω−1i− jT Ω−1j. (4)

Under most circumstances, it is sensible to impose
constraints that the vectors iT B−1 and jT B−1 be
orthogonal and have unit aspect ratio (i.e. rskw =
rasp = 0). As a result, at a given instant, i, three
or more views of the subject provide at least six
linear constraints on B−1

i B−T
i = Ω−1

i and a linear
least squares solution for Ω−1

i minimizes rskw and
rasp [18,20]. However, in this case (where only two
views are available) there are insufficient constraints
on Ω−1

i and an infinite number of solutions exist.

3.2. Structural constraints

In order to overcome this deficiency for fewer than
3 views, it has been shown [17,19] that using knowl-
edge of the human body imposes further constraints
on reconconstructions. Figure 1 illustrates the four
symmetry constraints (solid arrows) between the
arms and legs and nine rigidity constraints (dashed
arrows) on the left/right upper arm, forearm, thigh
and foreleg, and hips, as suggested by Liebowitz and
Carlsson [17].

More formally, two 3D vectors, Xi,p and Xi,q,
representing different links in the same affine re-
construction, i, transform to BiXi,p and BiXi,q in
Euclidean space. Likewise, the vectors Xi,p and Xj,p

representing the same link in different affine recon-
structions, i and j, constrain both Ωi and Ωj . The
residual errors, rsym and rrig, are given by:

rsym = XT
i,pB

T
i BiXi,p −XT

i,qB
T
i BiXi,q

= XT
i,pΩiXi,p −XT

i,qΩiXi,q (5)

rrig = XT
i,pB

T
i BiXi,p −XT

j,pB
T
j BjXj,p

= XT
i,pΩiXi,p −XT

j,pΩjXj,p. (6)

Although motion and symmetry constraints
alone are sufficient for self-calibration at each in-
stant, rigidity constraints (that apply at different
instants) account for scale changes over time that
are induced by perspective. Further, since rigidity
constraints apply between pairs of reconstructions
there is a combinatorial number of them, not all
independent (e.g . Xi,p = Xj,p and Xi,p = Xk,p

imply Xj,p = Xk,p). Although they may be applied
between consecutive instants ({0, 1}, {1, 2} etc.) as
in [17], we apply them with respect to the same re-
construction ({0, 1}, {0, 2} etc.) in order to prevent
the scale from drifting over the sequence.

4. Baseline method

We begin by presenting the ‘baseline’ method pro-
posed by Liebowitz and Carlsson [17]. It is against
this method that we base our comparisons in Sec-
tion 8.

4.1. Recovery of local structure

To recover the rectifying transformations (and
hence Euclidean structure and motion), all resid-
uals must be minimized. However, this cannot
be achieved using linear methods since motion
and structure constrain Ω−1 and Ω, respectively.
Liebowitz and Carlsson optimize directly over the
6F − 1 elements of all Bi (up to scale) using a cost
function of the form:

C = wcam · ccam + cstr (7)

where
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ccam =
∑

r2skw +
∑

r2asp (8)

cstr =
∑

r2sym +
∑

r2rig (9)

and wcam weights the costs according to the relative
confidence in the motion and structural constraints.
Having recovered all Bi, they compute Euclidean
structure and motion at each frame: X̃i ← BiXi

and P̃i ← PiB−1
i , respectively. We refer to this as

local structure since the choice of coordinate frame
is arbitrary at each time instant and rigid transfor-
mations between frames are not recovered.

4.2. Recovery of global structure

From the enforcement of rigidity over the se-
quence, any scaling due to perspective over time
can be recovered from the computed projection ma-
trices. Therefore, perspective effects over time can
be removed by rescaling the image measurements
as if viewed orthographically. All F normalized im-
ages of N features can then be treated as a single
image of FN features in a static scene with a com-
mon co-ordinate frame. To normalize the data, each
Euclidean projection matrix P̃i is decomposed into
its internal and external parameters:

P̃i =

Ki,1 0

0 Ki,2

P̂i,1

P̂i,2

 (10)

where P̂i,n is an orthographic projection matrix
(such that îT ĵ = 0 and îT î = ĵT ĵ = 1) and Ki,n is
the corresponding affine calibration matrix of the
form:

K =

s β

0 κs

 (11)

where s is the scale, κ is the aspect ratio and β the
skew (subscripts are omitted for clarity). The im-
age measurements are normalized to the same size
using the scale factors, s, and a single Ω is recov-
ered for the entire sequence, yielding global structure
where rotation and relative translation of the body
between frames is also recovered. This global struc-
ture is then approximated by an articulated body of
median segment lengths.

5. Proposed method

Although theoretically sound, the method pre-
sented in [17] has a number of practical limitations:

it is inefficient since optimization is performed over
6F − 1 variables; it has no intuitive initialization
since linear solutions for Ωi are seldom positive
definite such that the Bi cannot be recovered by
Cholesky decomposition; there is considerable am-
biguity when implementing the method since each
Bi can be parameterized in several different ways
(our experience suggests this can significantly affect
performance); the value of wcam must be chosen
empirically.

5.1. Minimal parameterization

To address these shortcomings, we propose an im-
proved method that exploits a minimal parameteri-
zation of Ωi based upon reasonable assumptions re-
garding camera calibration. Specifically, we strictly
enforce motion constraints, resulting in reconstruc-
tions that are constrained to lie in a Euclidean coor-
dinate frame. This has an unambiguous implemen-
tation, reduces computational complexity and pro-
vides an intuitive starting point for non-linear opti-
mization.

By strictly enforcing motion constraints, we elim-
inate four degrees of freedom in Ω−1

i . The four mo-
tion constraints defined by (3) and (4) yield a lin-
ear system with a two dimensional null-space that
is spanned by two possible values for Ω−1

i (denoted
by Ω−1

i,1 and Ω−1
i,2 ). Any linear combination of Ω−1

i,1

and Ω−1
i,2 satisfies all motion constraints exactly. We

parameterize all such Ω−1
i using polar coordinates:

Ω−1
i (r, θ) = r(cos(θ) · Ω−1

i,1 + sin(θ) · Ω−1
i,2 ) (12)

= r cos(θ)(Ω−1
i,1 + tan(θ) · Ω−1

i,2 ) (13)

such that for any given θ, the eigenvalues of Ω−1
i are

equal up to scale for all positive r. Using this para-
meterization, only 2F − 1 parameters are required
to describe the calibration of the entire sequence (in
contrast to the 6F − 1 non-zero elements of Bi em-
ployed in the baseline method). However, additional
measures are required in order to enforce the con-
straint that Ω−1

i be positive-definite.

5.2. Optimization

In an early version of this method, we proposed a
simple solution to this problem. Using the polar pa-
rameterization of Ω−1

i , we computed the six values
of θ for which |Ω−1

i | = 0 (where at least one eigen-
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value is zero). The range [0, 2π) is therefore divided
into six intervals, only one of which corresponds to a
positive-definite Ω−1

i for all positive r. This interval,
(θmin, θmax), is recovered by evaluating the eigen-
values of Ω−1

i at the midpoints of the six intervals.
The midpoint of (θmin, θmax) then provides a simple
initial value for θ, whilst r is initialized to unity.

Further investigation of the problem (also re-
ported in [21]) revealed that the minimum of rsym

can be computed in closed form for every time in-
stant in the sequence to provide an improved initial
value of θ. Preliminary investigations suggest there
is no closed form solution for the complete system.

We then minimize cstr only (ccam = 0 by design
such that wcam is no longer required) over all r > 0
and θ ∈ (θmin, θmax) such that the resulting Ω−1

i are
guaranteed to be positive definite and all B can be
recovered by Cholesky factorization. Note that since
Ω−1

i is singular at θmin and θmax the cost at these
values increases to infinity. As a result, the mini-
mization is effectively ‘self-constraining’ such that
unconstrained methods are successfully employed in
all but a few cases.

6. Bundle adjustment

Having recovered local and global structure using
the minimal parameterization, we approximate the
recovered structure with an articulated model of me-
dian segment lengths and estimated pose, as in [17].
We then further optimize all free parameters using a
final bundle adjustment (Levenberg-Marquardt, im-
plemented as lsqnonlin in Matlab). At this point
we relax symmetry constraints since they are the
most uncertain of our assumptions.

Minimization of the geometric reprojection er-
ror is achieved by optimizing over the v views of
i frames for all camera parameters – image scales
{si,v}, camera rotations {Rv} and translations, {tv}
– and structural parameters – segment lengths, L,
and pose parameters, {φφφi}. We retain the assump-
tion that the cameras have unit aspect ratio and zero
skew.

Defining εεε as the vector of reprojection errors over
all measurements, we seek to minimize the sum of
squared reprojection errors, εεεTεεε, over all frames:

εεεTεεε =
∑

v

∑
i

∑
n

‖si,vRvXi,n(L,φφφi)+tv−xi,v,n‖2F

(14)

where Xi,n(L,φφφi) is the 3D location of the nth fea-
ture in the ith frame given the link lengths, L, and
pose parameters, φφφi and xi,v,n is the corresponding
image measurement. This minimization is achieved
by iteratively solving:

∆p = −(JT J + λI)−1JTεεεp (15)

for ∆p where p is the vector of all parameters and
J is the Jacobian (matrix of derivatives) of all mea-
surements with respect to the parameters. λ is a reg-
ularization parameter to ensure that the step size
remains within the trust region where the lineariza-
tion, upon which Levenberg-Marquardt is based, re-
mains valid. Since scale and pose parameters are
frame dependent, J is sparse and minimization is
computationally efficient. The end result is an ar-
ticulated model of fixed link lengths, fitted to the
anthropomorphic dimensions of the subject (up to
scale) and capturing the pose at every frame such
that all constraints are strictly enforced.

7. Outlier rejection

As with all methods based on linear least squares
minimization, gross outliers in joint locations have a
highly detrimental effect on algorithm performance.
We note, however that simple measures can be taken
to eliminate many gross outliers using random sam-
pling methods [22] to estimate the (affine or pro-
jective) fundamental matrix. In the case of affine
projection, it has been shown that computationally
cheap subspace-based methods can be employed to
verify spatial matching [23].

We take a different approach based on full per-
spective projection: the cameras in our application
are fixed with respect to each other such that all im-
age pairs in an entire sequence must share the same
epipolar geometry. Although at each time instant
it is possible to use an affine approximation (since
a person’s relief is typically much smaller than the
viewing distance), motion towards and away from a
camera induces perspective effects over the sequence
that we can use to our advantage. Each putative
feature match in an entire sequence constrains the
epipolar geometry and we use this large feature set
to estimate the fundamental matrix robustly using
RanSaC. The benefits resulting from this procedure
are demonstrated in Section 8.1.5.
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Fig. 2. Synthetic ’running’ sequence as seen from two wide

baseline viewpoints. The red circles indicate point features
used as inputs to the synchronization algorithm.
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Fig. 3. (a) Recovered scaling as a result of perspective ef-

fects. (b) Recovered trajectories of the knees during running

sequence. The expected periodicity and phase difference is
clearly evident.

8. Performance evaluation

We now present results using synthetic data to
demonstrate the benefits of the proposed method
over the baseline implementation [17].

8.1. Running sequence

Two views of a short running motion (consisting
of 30 frames) were synthesized using motion capture
data from a commercial system (Figure 2). An ar-
ticulated model of known segment lengths was im-
aged under perspective projection and the projected
image features used to recover affine structure by
factorization. Metric structure and motion was then
recovered using four methods: (i) rectification us-
ing a local implementation of Liebowitz and Carls-
son’s method (‘L&C’); minimal parameter rectifi-
cation with (ii) no bundle adjustment (‘Minimal’);
(iii) affine bundle adjustment (‘A.B.A.’); (iv) per-
spective bundle adjustment (‘P.B.A.’, a ‘gold stan-
dard’ for comparison). This particular sequence was
selected since the translation of the subject induced
scaling over time due to perspective.

Figure 3a shows the recovered scales as a results
of perspective – the subject runs toward one camera

Table 1
Performance comparison of four methods where it is clear

that the minimal parameterization heavily outperforms the

original parameterization. Bundle adjustment reduces the
errors further at some computational cost.

L&C Minimal A.B.A. P.B.A.

A
# iterations 15 6 6 6

Time (sec) 1.14 0.20 0.20 0.20

B
# iterations 439 5 5 5

Time (sec) 2.31 0.039 0.039 0.039

C
# iterations - - 9 185

Time (sec) - - 8.934 133.5

Total time (sec) 4.33 1.60 12.36 137.3

Reproj. error (pixels) 1.41 1.44 0.785 <10−3

Joint angle error (rad) 0.0521 0.0511 0.0328 <10−3

Limb length error (%) 0.958 0.996 0.798 <10−3

and away from the other. The recovered angles at the
knees are shown in Figure 3b where the periodicity
and phase difference of the running motion is clearly
observable.

8.1.1. Comparison of algorithm efficiency
Table 1 compares the described methods using

noiseless data, based upon (i) number of iterations
required for convergence, (ii) time taken (using a
3.2GHz Pentium 4 desktop computer) for conver-
gence, (iii) total time taken (including fixed over-
head costs) and (iv) final RMS reprojection error.
We show separate metrics for the recovery of local
structure (A), recovery of global structure (B) and
bundle adjustment (C).

Minimal parameterization clearly outperforms
the baseline method in efficiency with little penalty
in accuracy while bundle adjustment increases ac-
curacy further at some additional computational
cost (although the tradeoff between accuracy and
computational expense is controlled via the stop-
ping criterion). As expected, perspective bundle
adjustment converges to an almost exact solution
with noiseless data. Since structure is recovered
up to a rotation and scaling, measuring distances
between a recovered joint location and its corre-
sponding ground truth value in 3D is non-trivial.
Instead, we use invariant metric quantities such as
joint angles and normalized limb length in order to
evaluate the quality of the recovered solution.

In the following experiments, we added zero-mean
Gaussian noise of increasing standard deviation σ
in order to quantify sensitivity. Each algorithm was
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Fig. 4. (a) Recovered ψ (rad) with respect to image feature

locations corrupted by noise of standard deviation σ pixels;

(b) Recovered ωerr (rad) with respect to image feature lo-
cations corrupted by noise of standard deviation σ pixels.

applied in order to recover a number of system pa-
rameters and errors quantified for each algorithm.
This was repeated 20 times for each value of σ in or-
der to estimate the error distribution (although only
the means of the distributions are presented for the
sake of clarity).

8.1.2. Recovery of camera parameters
To compare the recovered rotation between cam-

eras, we recover external parameters from the com-
puted projection matrices. Using the axis-angle no-
tation, a rotation matrix is represented by the unit
axis of rotation, a, and angle of rotation, ω, about
this axis. We denote ground truth values by agt and
ωgt, respectively, quantifying error using the angle
between axes a and agt, ψ = cos−1(aT

gta), and the
difference in angle of rotation, ωerr = |ωgt − ω|.

Figure 4 shows that bundle adjustment results in
a considerable reduction in ωerr when compared to
the ‘raw’ output of the ‘Lieb’ and ‘Minimal’ algo-
rithms. Furthermore, it can be seen that the error
following bundle adjustment is relatively invariant
to the level of noise. More interestingly, we see that
while ωerr increases with noise, φ decreases (albeit
by a smaller amount) for the non-bundle adjusted
methods. However, we note that there is an inherent
difficulty in quantifying the error between two rota-
tion matrices – an intuitive single error value does
not exist and using two values may result in the er-
ror compensation that is evident for the non-bundle
adjusted data shown here.

8.1.3. Recovery of segment lengths
To compare segment lengths, we recover metric

3D structure over the entire sequence and compute
the median length for each body segment. These me-
dian values are then normalized such that the hips
have unit length before comparing them with ground
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Fig. 5. (a) Mean percentage error in recovered limb lengths

with respect to image feature locations corrupted by noise
of standard deviation σ pixels; (b) Mean RMS error in joint

angle (rad) over the knee and elbow joints with respect

to image feature locations corrupted by noise of standard
deviation σ pixels.

truth values. Since our minimal parameterization
strictly enforces motion constraints we might expect
a deterioration in the recovered structure (which
‘absorbs’ all of the measurement errors). However,
our results suggest that this effect is very slight.

Figure 5a shows mean percentage errors in recov-
ered body segment length using the four methods.
We see that error increases sharply with image noise
since even a small amount of noise may result in a
large percentage error in projected length for frames
where the limb is almost normal to the image plane.
We also see that the error is actually greater for per-
spective bundle adjustment than for affine bundle
adjustment, in disagreement with intuition. How-
ever, observation of the error variances (not shown)
suggests that this difference is unlikely to be signif-
icant.

8.1.4. Recovery of joint trajectories
We now show how image noise affects RMS error

in joint angle, using the elbow and knee joints that
are invariant to global coordinate frame. Figure 5b
shows error increase sharply since even a small error
in projected length is interpreted as a large error in
joint angle. The converse problem is encountered in
model-based tracking where rotations out of the im-
age plane are almost unobservable since they result
in small image motion [24].

8.1.5. Sensitivity to gross outliers
Finally, we investigate the sensitivity of the algo-

rithm to gross outliers as a result of tracking error.
Such errors have two deleterious effects: (i) increased
RMS projection errors and consequent increased er-
rors in recovered structure; (ii) more seriously, they
often result in failure of the algorithm to converge to
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Table 2
Convergence frequency, RMS reprojection error and limb

lengths error with outliers.

Convergence Reproj. error Limb error

Method RMS (pixels) Mean (%) Max. (%)

No outliers 100% 1.78 2.52 6.31

Known 100% 1.81 2.71 6.55

RanSaC 81% 2.23 4.36 9.56

Näıve 31% 7.30 5.11 12.10

a sensible solution. We show that such problems are
significantly reduced using robust matching tech-
niques.

Using a different synthetic sequence of 38 frames,
we added Gaussian noise (σ = 2 pixels) and per-
formed self-calibration (‘No outliers’). We then
deliberately corrupted approximately 10% of the
correspondences (selected randomly) with Gaussian
noise of standard deviation 40 pixels to simulate
gross error and performed self-calibration three
more times: (i) after removing all known outliers
(‘Known’); (ii) after removing outliers detected
using robust matching (‘RanSaC’); (iii) after re-
moving none of the outliers (‘Näıve’). Since this
experiment concerns only the early stages of the
algorithm, no bundle adjustment was used.

Table 2 shows the convergence frequency over 100
tests, and the RMS reprojection and structure er-
rors averaged over the tests that did converge (only
points labelled as inliers were used to compute these
values). Methods ‘Näıve’ and ‘Known’ respectively
show that performance is poor with outliers present
but improves dramatically when they are all re-
moved. The ‘RanSaC’ method shows that robust
matching methods [22] provide some defence against
such outliers. In particular the percentage of trials
that converge is dramatically increased, as well as
an expected decrease in structural error.

However, one weakness of binocular outlier rejec-
tion schemes is that only those outliers lying far from
their estimated epipolar line are detected. Large
noise components parallel to the epipolar line remain
undetected and continue to influence the recovered
structure and motion adversely. Further mitigation
against these effects could be obtained using, for ex-
ample, smooth motion priors to detect remaining
outliers.

Fig. 6. Running sequence as seen from two wide baseline

viewpoints.
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Fig. 7. (a) Recovered scaling as a result of perspective ef-
fects. (b) Recovered trajectories of the knees during running

sequence. The expected periodicity and phase difference is

clearly evident.

Table 3

Recovered body segment lengths (relative to the hips) for the
running sequence. The recovered limbs are approximately

symmetric and in proportion.

Limb Left Right

Upper arm 1.223 1.249

Lower arm 1.004 1.071

Upper leg 1.619 1.679

Lower leg 1.693 1.709

9. Real examples

9.1. Running sequence

Applying the algorithm to a real ‘running’ se-
quence (Figure 6), the affine reconstructions were
calibrated using the minimal parameterization in 37
iterations, taking approximately 4.3 seconds. In con-
trast, Liebowitz’s method took 38 seconds to com-
pute local structure and did not converge on global
structure within 104 iterations. Affine bundle ad-
justment was then applied to the recovered struc-
ture reducing RMS reprojection error from 5.44 pix-
els to 2.76 pixels. For comparison, perspective bun-
dle adjustment reduced RMS reprojection error to
2.24 pixels.

Figure 7a shows the recovered scaling of the body
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Fig. 8. Handstand sequence as seen from two wide baseline

viewpoints.
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Fig. 9. (a) Recovered scaling as a result of perspective ef-

fects. (b) Recovered trajectories of the knees during hand-

stand sequence shoing now periodicity or particular phase
difference.

Table 4

Recovered body segment lengths (relative to the hips) for the

handstand sequence. The recovered limbs are approximately
symmetric and in proportion.

Limb Left Right

Upper arm 1.076 1.105

Lower arm 0.856 0.968

Upper leg 1.645 1.719

Lower leg 1.458 1.584

as a result of perspective whilst Figure 7b shows the
joint angle trajectories of the knees over 150 frames
of the running sequence. The anticipated periodicity
and phase difference in the running motion is clearly
evident. Table 3 shows the recovered body segment
lengths (again, normalized such that the hips have
unit length). It can be seen that the recovered body
model is in proportion and approximately symmet-
ric, despite the fact we impose no constraints on the
symmetry of the body during bundle adjustment.

9.2. Handstand sequence

For the ‘handstand’ sequence (Figure 8), our
method converged in 109 iterations, taking only 9.5
seconds, with an RMS reprojection error of 6.79
pixels. Affine bundle adjustment reduced RMS re-

Fig. 10. Euclidean reconstruction of a handstand sequence

Fig. 11. Juggling sequence as seen from two wide baseline

viewpoints.
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Fig. 12. (a) Recovered scales where we see little change since

the subject was not moving with respect to the camera. (b)

Recovered trajectories of the elbows during juggling where
the out of phase periodic motion is clearly observable.

projection error to 3.92 pixels, compared with 3.41
pixels following perspective bundle adjustment. In
contrast, Liebowitz’s method required 6951 itera-
tions, taking 101 seconds, with an RMS reprojection
error of 7.56 pixels.

Figure 9a shows the recovered scales due to per-
spective and Figure 9b shows the joint angle trajec-
tories of the knees. In this case, there is no period-
icity or phase change since the motion is not cyclic.
Again, we see that the recovered kinematic struc-
ture (Table 4) is in proportion and approximately
symmetric. The resulting Euclidean reconstruction
of the handstand motion is shown in Figure 10.

9.3. Juggling sequence

For the juggling sequence (Figure 11), the min-
imal parameterization converged in 19 iterations,
taking approximately 0.8 seconds, with an RMS
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Table 5
Recovered limb lengths (relative to the left upper arm) for the

juggling sequence. The recovered limbs are approximately

symmetric and in proportion.

Limb Left Right

Upper arm 1.000 1.032

Lower arm 0.984 0.982

Fig. 13. Euclidean reconstructions from juggling sequence

reprojection error of 4.13 pixels. In contrast,
Liebowitz’s method required 1425 iterations, taking
20.2 seconds, albeit with a better RMS reprojec-
tion error of 3.78 pixels. Affine bundle adjustment
reduced RMS reprojection error further to 2.13 pix-
els, compared with 2.15 pixels following perspective
bundle adjustment.

Again, Figure 12a shows the scales due to perspec-
tive effect that are small in this case since the sub-
ject does not move towards or away from the cam-
era. This lack of change in depth would explain why
perspective bundle adjustment performed no better
than the affine bundle adjustment for this sequence.
Figure 12b shows the recovered joint trajectories of
the elbows during the motion where the periodicity
of the motion is clearly apparent in addition to the
phase difference. Table 5 shows the recovered body
segment lengths where we see that the symmetry has
been recovered and the segments are in proportion,
despite the reduced number of structural constraints
(the lengths are normalized with respect to the up-
per left arm). Figure 13 shows the reconstructed up-
per body in a Euclidean co-ordinate frame.

10. Conclusion

We have presented a self-calibration method for
recovering non-rigid structure and motion in a
Euclidean co-ordinate frame from a pair of uncal-
ibrated cameras. The method is an improvement
on the original algorithm of Liebowitz and Carls-
son [17] in that our alternative parameterization of
the solution space is computationally efficient, has
an unambiguous implementation and provides an
intuitive initialization for the optimization process.
A full bundle adjustment over the free parameters
then recovers the maximum likelihood solution.

Affine bundle adjustment with appropriate scaling
resulted in performance almost matching perspec-
tive bundle adjustment with large savings in com-
putation. The method is demonstrated on a number
of sequences of human motion (both synthetic and
real) where the accurate recovery of underlying
structure and joint angles is observed.

The key limitation of the method (as shared
by [17]) is the need for spatial correspondence. How-
ever, we note that a number of algorithms exist for
the automatic recovery of joint centre projections
that may be applied for this task. Furthermore, the
calibration method is strictly a batch process (since
it uses all affine reconstructions simultaneously)
and could not be employed for real-time applica-
tions. An obvious extension would be to develop a
recursive process that converges to the maximum
likelihood solution. Finally, the sharp increase in
joint angle error with noise suggests that integration
with a motion model would also be beneficial.

Acknowledgment

This project was funded by the Engineering and
Physical Sciences Research Council (EPSRC). Im-
age sequences were provided by Oxford Metrics.
Data used in these experiments was obtained from
mocap.cs.cmu.edu and created with funding from
NSF EIA-0196217. The authors would also like to
thank the reviewers for their helpful comments.

References

[1] Vicon Motion Capture Solutions, Online specifications,

http://www.vicon.com.

[2] J. Sullivan, S. Carlsson, Recognizing and tracking

human action, in: Proc. 7th European Conf. on

Computer Vision, Copenhagen, 28–31 May, Vol. 1,
Springer LNCS 2350, 2002, pp. 629–644.

[3] B. Stenger, A. Thayananthan, P. H. S. Torr, R. Cipolla,
Filtering using a tree-based estimator, in: Proc. 9th Int’l

Conf. on Computer Vision, Nice, 14–17 October, Vol. 2,

2003, pp. 1063–1070.

[4] G. Shakhnarovich, P. Viola, T. Darrell, Fast pose

estimation with parameter sensitive hashing, in: Proc.

9th Int’l Conf. on Computer Vision, Nice, 14–17
October, Vol. 2, 2003, pp. 750–759.

[5] R. Rosales, S. Sclaroff, Inferring body pose without
tracking body parts, in: Proc. 19th IEEE Conf. on

Computer Vision and Pattern Recognition, Hilton Head
Island, SC, USA, 13–15 June, Vol. 2, 2000, pp. 721–727.

[6] A. Agarwal, B. Triggs, Recovering 3D human pose

from monocular images, IEEE Transactions on Pattern
Analysis and Machine Intelligence 28 (1) (2006) 1–15.

10



[7] C. Sminchisescu, A. Kanaujia, Z. Li, D. Metaxas,

Discriminative density propagation for 3D human

motion estimation, in: Proc. 23nd IEEE Conf. on
Computer Vision and Pattern Recognition, San Diego,

CA, USA, 20–26 June, Vol. 1, 2005, pp. 390–397.

[8] P. Felzenszwalb, D. Huttenlocher, Pictorial structures
for object recognition, International Journal of

Computer Vision 61 (1).

[9] D. Ramanan, D. A. Forsyth, A. Zisserman, Tracking
people by learning their appearance, IEEE Transactions

on Pattern Analysis and Machine Intelligence 29 (1).

[10] R. Ronfard, C. Schmid, B. Triggs, Learning to parse
pictures of people, in: Proc. 7th European Conf. on

Computer Vision, Copenhagen, 28–31 May, Vol. 4,
Springer LNCS 2353, 2002, pp. 700–714.

[11] I. Reid, A. Zisserman, Goal-directed video metrology,

in: Proc. 4th European Conf. on Computer Vision,
Cambridge, 15–18 April, Vol. 2, Springer LNCS 1065,

1996, pp. 647–658.

[12] Y. Caspi, D. Simakov, M. Irani, Feature-based
sequence-to-sequence matching, International Journal of

Computer Vision 68 (1).

[13] T. Tuytelaars, L. V. Gool, Synchronizing video
sequences, in: Proc. 22nd IEEE Conf. on Computer

Vision and Pattern Recognition, Washington, DC, USA,

27 June–2 July, 2004, pp. 762–768.

[14] P. Tresadern, I. Reid, Synchronizing image sequences of

non-rigid objects, in: Proc. 14th British Machine Vision

Conf., Norwich, 9–11 September, Vol. 2, 2003, pp. 629–
638.

[15] P. Tresadern, I. Reid, Uncalibrated and unsynchronized
human motion capture : A stereo factorization approach,

in: Proc. 22nd IEEE Conf. on Computer Vision and

Pattern Recognition, Washington, DC, USA, 27 June–2
July, Vol. 1, 2004, pp. 128–134.

[16] S. N. Sinha, M. Pollefeys, L. McMillan, Camera

network calibration from dynamic silhouettes, in: Proc.
22nd IEEE Conf. on Computer Vision and Pattern

Recognition, Washington, DC, USA, 27 June–2 July,

Vol. 1, 2004, pp. 195–202.

[17] D. Liebowitz, S. Carlsson, Uncalibrated motion

capture exploiting articulated structure constraints,

International Journal of Computer Vision 51 (3) (2003)
171–187.

[18] C. Tomasi, T. Kanade, Shape and motion from image

streams under orthography: A factorization approach,
International Journal of Computer Vision 9 (2) (1992)

137–154.

[19] C. J. Taylor, Reconstruction of articulated objects from
point correspondences in a single uncalibrated image,

Computer Vision and Image Understanding 80 (3)
(2000) 349–363.

[20] L. Quan, Self-calibration of an affine camera from
multiple views, International Journal of Computer
Vision 19 (1) (1996) 93–110.

[21] R. Wang, W. K. Leow, Human posture sequence

estimation using two un-calibrated cameras, in: Proc.
16th British Machine Vision Conf., Oxford, 5–8

September, 2005.

[22] P. H. S. Torr, D. W. Murray, The development
and comparison of robust methods for estimating the

fundamental matrix, International Journal of Computer
Vision 24 (3) (1997) 271–300.

[23] L. Zelnik-Manor, M. Irani, Degeneracies, dependencies

and their implications in multi-body and multi-sequence
factorization, in: Proc. 21st IEEE Conf. on Computer

Vision and Pattern Recognition, Madison, WI, USA,

16–22 June, Vol. 2, 2003, pp. 287–293.
[24] D. Morris, J. Rehg, Singularity analysis for articulated

object tracking, in: Proc. 17th IEEE Conf. on Computer

Vision and Pattern Recognition, Santa Barbara, CA,
USA, 23–25 June, 1998, pp. 289–297.

11


